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We propose a set of methods for the estimation of the parameters of time-delay systems with a linear filter
and nonlinear delay feedback performing periodic oscillations. The methods are based on an analysis of the
system response to regular external perturbations and are valid only for systems whose dynamics can be
perturbed. The efficiency of the methods is illustrated using both numerical and experimental data.
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I. INTRODUCTION

Self-sustained oscillators with delay-induced dynamics
are widespread in nature and engineering. Their abundance
results from such fundamental features as the finite velocity
of signal propagation and delayed feedback inherent to many
physical �1–3�, chemical �4,5�, climatic �6,7�, and biological
�8–10� systems and processes. In recent years the problem of
estimation of the parameters of time-delay systems from ex-
perimental time series has attracted a lot of attention. The
solution of this problem allows one to predict the system
behavior under parameter variation, to test the adequacy of a
model, to classify the systems and their regimes, and to re-
cover the parameters that cannot be directly measured in an
experiment. A variety of methods have been proposed to re-
construct the model equations of time-delay systems from
their chaotic time series �11–19�. However, these methods
fail if a time-delay system executes a periodic motion �20�.
In this case one cannot recover the delay time because it is
not possible to define from periodic oscillations whether the
system is governed by a delay-differential equation or an
ordinary differential equation. But in practice many impor-
tant systems with delay-induced dynamics operate in peri-
odic or nearly periodic regimes �21–23�. To estimate their
parameters one has to develop new techniques. The problem
of recovering the parameters of time-delay systems in peri-
odic regimes was addressed recently in Ref. �24�, where for
the delay time estimation it was proposed to disturb the sys-
tem by a short-correlated noisy signal of large amplitude and
to analyze the correlation function. The delay was identified
by a jump in the second derivative of the correlation func-
tion, which is a manifestation of the system response after
the delay time to the short-correlated strong disturbances.

In this paper we propose another approach for recon-
structing the parameters of time-delay systems performing
periodic oscillations based on an analysis of the system re-
sponse to regular external impulsive perturbations. The use
of a periodic impulsive disturbance can be preferable in
some cases. If the external disturbance is strong enough, it
leads to the appearance of a transient process. As a result, the
system motion takes place in a wider region of phase space.
It gives us additional information about the system dynamics
and can be useful for the recovery of system parameters.
Besides the delay time, the method allows one to reconstruct
other essential parameters of the system. The approach based

on the analysis of the transient processes is studied in Sec. II.
The proposed method is applied to the time series of a model
system and experimental data gained from an electronic os-
cillator with delayed feedback. However, in a number of
cases a strong disturbance of the system is undesirable be-
cause it can result in an essential change of the system be-
havior or even destruction of the system. In these cases the
use of small disturbances is preferable. In Sec. III we pro-
pose a method of parameter estimation for time-delay sys-
tems in periodic regimes based on an analysis of the system
response to a small periodic disturbance. Since the noise am-
plitude can be greater than the amplitude of small external
perturbations, we use the method of accumulation �25� for
analyzing the system response. The method is verified by
using it for the recovery of time-delay systems of different
order. In Sec. IV we summarize our results.

II. USING TRANSIENT PROCESSES FOR TIME-DELAY
SYSTEM RECOVERY

Let us consider a special time-delay system described by
the first-order delay-differential equation

�1ẋ�t� = − x�t� + f„x�t − �1�… , �1�

where �1 is the delay time, function f defines nonlocal cor-
relations in time, and the parameter �1 characterizes the in-
ertial properties of the system. In Ref. �16� it was found that
the time series of time-delay systems governed by Eq. �1�
practically have no extrema separated in time by the delay
time. If the system �1� performs chaotic oscillations, the ex-
trema in its time series are located irregularly and the time
intervals between these extrema can take different values.
Defining, for different values of �, the number N of situations
when the points of the time series separated in time by � are
both extremal, we can construct the N��� plot and recover the
delay time �1 as the value at which the absolute minimum of
N��� is observed �16�.

However, if the system �1� performs periodic oscillations,
this technique fails because the extrema in the time series are
located regularly. As a result, the N��� plot exhibits several
peaks separated by intervals where N=0. Figure 1 shows an
example of such a time series and the corresponding N���
plot for the system �1� with �1=300, �1=10, f�x�=�−x2, and
�=1. For a given parameter of nonlinearity �, the system �1�
shows periodic oscillations of period Ta=619 �Fig. 1�a��.
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Since the temporal realization of x�t� is asymmetric, the N���
plot �Fig. 1�b�� displays two peaks at �=305 and �=314,
which correspond to the distances between the maximum B
and the minimum C and between the minimum C and the
maximum D, respectively. Hence, the dependence of N on �
cannot be used for reconstructing the delay time from peri-
odic time series.

Let us disturb the system �1� by an external signal F�t�.
The disturbed system is given by

�1ẋ�t� = − x�t� + f„x�t − �1�… + F�t� . �2�

We consider the external signal F�t� having the form of rect-
angular pulses with amplitude A, period T, and duration M.
If the disturbance is strong enough, it leads to the onset of a
transient process that gives us additional information about
the system dynamics and can help in recovering the system
parameters �26�. In particular, the appearance of a large num-
ber of additional extrema in the time series during the tran-
sients results in the occurrence of a pronounced minimum in
the N��� plot at the delay time.

Figure 2 shows the time series and the dependence N���
for system �2� calculated at the same parameter values as in
system �1� and the pulse signal parameters A=0.5, T=490,
and M =0.2T. The time series in Fig. 2�a� looks like a chaotic
one and contains a large number of irregularly located ex-
trema. The N��� plot, constructed with a step of � variation
equal to 1, exhibits the minimum at the true value of the
delay time �=�1=300 �Fig. 2�b��. The location of the abso-
lute maximum of N��� is defined by the parameter �1 �16�.

The proposed method of delay time estimation is efficient
in a wide range of external signal parameters. For A=0.5 and
M =0.2T the period T of pulses arbitrarily taken from T
=1.2�1 to T=1.8�1 ensures an accurate recovery of �1 for the
considered values of the system parameters. There are also
narrower intervals of T less than �1 and greater than 2�1
providing an accurate reconstruction of the delay time.

Knowledge of oscillation mode of undisturbed system �1�
can help in choosing T. One should take into account that for
the most typical principal mode the delay time �1 is always
less than Ta /2 regardless of the nonlinear function of system
�1�. For the higher-order modes, which can take place for
very small �1, we have �1�nTa /2, where n is the mode
order. Furthermore, the range of values of T ensuring an
accurate recovery of �1 can be different for different nonlin-
ear functions. For a first approximation we suggest to take T
close to 0.8Ta and then vary it, if necessary. As a criterion for
a successful choice of T and other parameters of the pulse
signal one can use the presence of a single pronounced mini-
mum located just before the absolute maximum in the N���
plot �see Fig. 2�b��.

We have also tested the method by varying the pulse du-
ration from M =0.05T to M =0.5T. The method is still effi-
cient but needs the amplitude A to increase for small M. With
an increase of M, the value of A can be decreased. The
considered impulsive disturbance can have an advantage
over the system disturbance by a strong stochastic force used
in Ref. �24� for the delay time estimation in periodic regime.
The system is disturbed now not permanently but by a pulse
signal. It is easy to control the parameters of the impulsive
disturbance, choosing an appropriate variant from short but
strong disturbance to long but low-amplitude one.

To recover the parameter �1 and the nonlinear function f
from the system �1� periodic time series one can use the
method proposed in Ref. �11� and modified in Ref. �27�,
where it was applied to chaotic time series of the time-delay
system. Following this method, we have to project the sys-
tem �1� trajectory on the plane (x�t−�1� ,�ẋ�t�+x�t�) under
variation of � and calculate the length L��� of a line, con-
necting all points ordered with respect to the abscissa in the
mentioned plane. When the parameter � coincides with the
true parameter �1, the points of the projection lie on a single-
valued curve, reproducing the nonlinear function f . The
length L��� is minimal in this case. In the case of inaccurate
parameter estimation a set of points in the plane, to which
the trajectory of the system is projected, becomes more dis-
persed. As a result, the polygon line connecting these points
has a greater length than in the previous case.

Figure 3�a� shows the L��� plot constructed at the recov-
ered delay time �1=300 and the step of � variation equal to
0.01. The time derivative ẋ�t� is estimated from the time
series by applying a local parabolic approximation. The
minimum of L��� is observed at �=�1=10.00. The nonlinear
function, reconstructed for �1=300 and �1=10 from the sys-

FIG. 1. �a� The time series of periodic self-sustained oscillations
of the system �1�. �b� Number N of pairs of extrema in the time
series separated in time by �, as a function of �. N��� is normalized
to the total number of extrema in the time series.

FIG. 2. �a� The time series of the perturbed system �2�. �b�
Number N of pairs of extrema in the time series separated in time
by �, as a function of �. N��� is normalized to the total number of
extrema in the time series. Nmin���=N�300�.

FIG. 3. �a� Length L of a line connecting all points ordered with
respect to x�t−�1� in the (x�t−�1� ,�ẋ�t�+x�t�) plane of the system
�1�, as a function of �. L��� is normalized to the number of points in
the plane. Lmin���=L�10.00�. �b� The nonlinear function recovered
from the periodic time series of the system �1�. �c� The nonlinear
function recovered from the time series of the perturbed system �2�.
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tem �1� periodic time series, is presented in Fig. 3�b�. Such a
technique allows us to recover only a fragment of the func-
tion f , since the oscillations take place only in a small region
of phase space because of their periodicity. For a more ex-
tended recovery of the nonlinear function one should exploit
the time series of the perturbed system �2�. In this case only
the points of the time series corresponding to the intrinsic
dynamics of the time-delay system should be used for plot-
ting �1ẋ�t�+x�t� versus x�t−�1�. It means that we have to
exploit the points from the intervals between the successive
pulses of the external signal. The nonlinear function recov-
ered in this manner is depicted in Fig. 3�c�. It coincides well
with the true quadratic function of the system �1�.

To test the method efficiency in the presence of noise we
apply it to the data produced by adding a zero-mean Gauss-
ian white noise to the time series of Eq. �2�. For the cases
where the additive noise has a standard deviation of up to
10% of the standard deviation of the data without noise the
N��� plot still shows the minimum accurately at the delay
time. As for the parameter �1 and the nonlinear function, they
are recovered with a good accuracy using the time series of
the perturbed system—i.e., exploiting only the points from
the intervals between the successive external pulses.

The proposed method can be applied for reconstruction of
time-delay systems of high order and multiple delays in pe-
riodic regimes. In these cases for estimating the parameters
of the disturbed system one can use the methods developed
in Ref. �28� for reconstruction of high-order time-delay sys-
tems and systems with several delays from chaotic time se-
ries. However, the method is not valid for such time-delay
systems as those considered in Ref. �29�, containing the non-
linear term, which is a function of the nondelayed signal.

Let us consider application of the method to experimental
time series gained from an electronic oscillator with delayed
feedback perturbed by an external pulse signal. A block dia-
gram of the experimental setup is shown in Fig. 4. The delay
of the signal V�t� for time �1 is provided by a delay line
constructed using digital elements. The role of the nonlinear
device is played by an amplifier constructed using bipolar
transistors and having a quadratic transfer function. The in-
ertial properties of the oscillator are defined by a low-
frequency first-order RC filter, which resistance R and ca-
pacitance C specify �1=RC. The analog and digital elements
of the scheme are connected with the help of analog-to-
digital and digital-to-analog converters. The signal from a
pulse generator is applied to the oscillator using the summa-
tor �. The considered oscillator is governed by the first-order
delay-differential equation

RCV̇�t� = − V�t� + f„V�t − �1�… + F�t� , �3�

where V�t� and V�t−�1� are the delay line input and output
voltages, respectively. In the absence of an impulsive distur-

bance the oscillator shows at �1=4.16 ms and RC=0.32 ms
periodic self-sustained oscillations of period Ta=8.88 ms.

Using an analog-to-digital converter with sampling fre-
quency fs=50 kHz we record the signal V�t� at the pulse
signal parameters A=1.6 V, T=7.5 ms, and M =1.5 ms. Part
of the experimental time series is shown in Fig. 5�a�. For
various � values we count the number N of situations when

V̇�t� and V̇�t−�� are simultaneously equal to zero and con-
struct the N��� plot �Fig. 5�b��. The step of � variation in Fig.
5�b� is equal to the sampling time Ts=0.02 ms. The absolute
minimum of N��� takes place exactly at the delay time �
=�1=4.16 ms. The L��� plot, constructed with the recovered
�1=4.16 ms and the step of � variation equal to 0.01 ms,
exhibits the minimum at �=�1=0.32 ms �Fig. 5�c��. In Fig.
5�d� the nonlinear function recovered from the time series of
the disturbed system is presented. This function coincides
closely with the true transfer function f of the amplifier.

III. CASE OF TIME-DELAY SYSTEM DISTURBANCE BY
A SMALL PERIODIC SIGNAL

The use of strong disturbance leading to the appearance of
a transient process in a time-delay system performing peri-
odic oscillations is not always possible. Because of the pe-
culiarities of the system dynamics, the strong disturbance can
result in undesirable qualitative change of the system behav-
ior or even cause a destruction of the system. In these cases
it is preferable to use small disturbances for estimating the
system parameters. In this section we propose an original
method for the recovery of time-delay systems in periodic
regimes based on the analysis of the system response to per-
turbation by a small periodic signal.

Let us consider a ring time-delayed feedback system com-
posed of a delay line, nonlinear device, and filter �Fig. 6�a��,
performing periodic self-sustained oscillations x�t� with pe-

FIG. 4. Block diagram of the electronic oscillator with delayed
feedback disturbed by a pulse signal.

FIG. 5. �a� Experimental time series of the electronic oscillator
with delayed feedback under impulsive disturbance. �b� Number N
of pairs of extrema in the time series separated in time by �, as a
function of �. N��� is normalized to the total number of extrema in
the time series. Nmin���=N�4.16 ms�. �c� The dependence L��� nor-
malized to the number of points. Lmin���=L�0.32 ms�. �d� The re-
covered nonlinear function.
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riod Ta �Fig. 6�b��. We disturb the system by an external
signal y�t� having the form of rectangular radio pulses with
linearly increasing filling frequency �Fig. 6�c��. The filling
period is always less than the period of oscillations, Ta. The
pulse period T greatly exceeds the preliminary estimation of
the delay time, which is usually less than Ta /2. The form of
the model equation for this system is determined by the filter
parameters and the point of the external signal injection into
the ring time-delay system. In the case where the filter is
composed of three identical in-series low-frequency RC fil-
ters and the signal y�t� is added to the system between the
filter and the delay line �Fig. 6�a��, the considered system is
governed by the third-order delay-differential equation

�3
d3x�t�

dt3 + �2
d2x�t�

dt2 + �1
dx�t�

dt

= − x�t� + f„x�t − �1� + y�t − �1�… , �4�

where �1=3RC, �2=3�RC�2, and �3= �RC�3. If the filter is a
two-section RC filter with identical sections, then �3=0, �2
= �RC�2, and �1=2RC. In the case of a simple low-frequency
RC filter the model equation takes the form of a first-order
delay-differential equation. As a nonlinear function we
choose the sigmoid

f�x� =
c

1 + a exp�− b�x − x0��
−

c

1 + a exp�b�x − x0��
, �5�

providing stable periodic oscillations in a wide region of the
control parameter variation. Note that the form of the non-
linear function is not critical for the method application. In-
stead of the function �5� one can choose, for example, the
quadratic function used in Sec. II.

The system was numerically investigated at a delay time
�1=120 s, filter cutoff frequency fF=1 /RC�0.0032 Hz, and
nonlinear function parameters a=1, b=2, c=−2, and x0
=0.5. The radio pulses had an amplitude A=0.05, period T
=2000 s, duration M =1000 s, and filling frequency fr lin-
early increasing from 0.01 Hz to 0.04 Hz. The self-sustained
oscillations had an amplitude of about 1 and the period Ta
taking the values of 320 s, 410 s, and 510 s for the system of
the first, second, and third order, respectively.

To separate the intrinsic dynamics of the system and its
response to perturbation we filter the signals x�t� and y�t�
with a high-frequency high-order filter with cutoff frequency
fc=0.01 Hz, which is much greater than the basic frequency
of the oscillations, fa=1 /Ta, but is not higher than the filling
frequency fr of the radio pulses. Then we divide the time
series of the filtered self-sustained oscillations into parts be-
ginning at the time moments of the appearance of the radio
pulses and sum these parts �Fig. 7�a��. Such a technique
based on the method of accumulation �25� allows one to
increase significantly the amplitude of the system response to
perturbations, because the summation of the pulse signals
passed through the system feedback circuit is carried out in
the same phase. On the contrary, the intrinsic oscillations of
the time-delay system are summed in different phases com-
pensating each other. As a result, it becomes possible to ex-
tract the system response to small disturbance even in the
presence of noise. The influence of noise tends to zero with
increasing number of superimposed parts of noisy time series
since the noisy signal has a random amplitude of different
sign. It should be noted that the method of accumulation �25�
has been known for a long time, but it was applied mainly in
the field of the transmission and detection of radio signals in
the presence of noise. In this paper we apply this method for
estimating the parameters of time-delay systems.

At the next step we calculate the cross-correlation func-
tion of the signals of disturbance y�t� and the system re-
sponse z�t�:

FIG. 6. �a� Block diagram of the ring time-delayed feedback
system under external perturbation. �b� The time series of periodic
self-sustained oscillations. �c� The time series of the external peri-
odic radio pulses with linearly increasing filling frequency.

FIG. 7. Superposition z of 100 responses of the time-delay sys-
tem to the small periodic impulsive disturbance and the cross-
correlation function C�s� of the signals of disturbance and the sys-
tem response for the system of the first ��a� and �b��, second ��c� and
�d��, and third ��e� and �f�� order. The dashed lines indicate the time
corresponding to the delay time �1=120 s. The inset in �a� is the
enlarged fragment of z�t� in the vicinity of t=120 s.
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C�s� =
�y�t�z�t + s��
��y�t�2��z�t�2�

, �6�

where the angular brackets denote averaging over time. We
use this function for estimating the delay time and the order
of the filter.

Let us consider what happens with the signal y�t� as it
passes through the ring time-delay system �Fig. 6�a��. At
first, the signal is retarded by the delay line. The cross-
correlation function of y�t� and y�t−�1� exhibits the maxi-
mum shifted by �1 with respect to zero. Second, the signal
y�t−�1� is transformed by the nonlinear device. Since the
nonlinear function �5� has a negative slope, the nonlinear
device changes the signal phase by � �30�. As a result, the
cross-correlation function of y�t� and f(y�t−�1�) instead of
the maximum has the minimum at the delay time. At last, the
signal f(y�t−�1�) passes through the filter, which changes the
signal phase. As the frequency fr is several times greater than
the filter cutoff frequency fF, the phase shift is almost con-
stant for the entire signal. For a first-order filter, the change
of signal phase is about −� /2. As a consequence, the cross-
correlation function �6� of y�t� and the system response z�t�
takes zero value at the delay time. In this case �1 can be
estimated as the value at which the first zero of C�s�, located
to the left of the deepest minimum of C�s�, is observed. The
plot of C�s� in Fig. 7�b� gives the estimation of �1=119 s.

For a second-order filter, the change of the phase of the
considered signal is close to −�. Hence, the delay time cor-
responds to the location of the maximum of the function �6�.
The delay time estimated from Fig. 7�d� is �1=119 s. A third-
order filter shifts the signal phase by −3� /2. In this case the
location of the first zero of C�s�, observed to the left of the
main maximum, gives the estimation of �1. The delay time
recovered from Fig. 7�f� is �1=118 s. Note that a high-
frequency filter with cutoff frequency fc does not change the
phase relation between the signals of perturbation and the
system response because both these signals pass through the
same filter.

The delay time and the order of the filter of the delayed
feedback system can be also estimated analyzing alone the
system response to small disturbance. The time-delay system
response to small periodic disturbance, accumulated using a
superposition of 100 responses, is presented in Figs. 7�a�,
7�c�, and 7�e� for the system of the first, second, and third
order, respectively. The delay of the response gives us the
following estimation: �1=121 s for Fig. 7�a�, �1=122 s for
Fig. 7�c�, and �1=123 s for Fig. 7�e�. For the first-order time-
delay system we can see oscillations of z in Fig. 7�a� in the
range of times from 0 until the delay time, impeding the
recovery of �1. In this case we estimate the delay time from
the inset of Fig. 7�a� as the value at which z�t� exhibits a
break. For more clearness we plot the second derivative of
z�t� in Fig. 8. The sharp minimum of d2z�t� /dt2 �see the inset
in Fig. 8� is observed at t=121 s giving the same estimation
of �1 as Fig. 7�a�.

As can be seen from Fig. 7, the amplitude of the response
signal z�t� decreases with the increase of the radio pulse
filling frequency. Such behavior of the response signal is
defined by the amplitude-frequency characteristic of the fil-

ter. Outside of a filter transmission band the attenuation of
the signal grows at the rate of about 6n dB/octave, where n is
the order of the filter �31�. We obtain the following numerical
estimation of the response amplitude decreasing:
7.5 dB/octave for Fig. 7�a�, 13.5 dB/octave for Fig. 7�c�, and
16.8 dB/octave for Fig. 7�e�. These results allow us to define
with confidence the order of the filter and the model equa-
tion.

The method is verified in the presence of noise. Figure 9
shows the results of the method application to the time series
of the considered first-order time-delay system corrupted by
additive zero-mean Gaussian white noise. In Figs. 9�a� and
9�b� the standard deviation of noise is 5% of the standard
deviation of data without noise �the signal-to-noise ratio is
about 26 dB� and about 200% of the standard deviation of
the disturbance. The parameters of the time-delay system and
the disturbance are chosen the same as those in Figs. 7�a� and
7�b�. The system response �Fig. 9�a�� gives an estimation of
�1=121 s for the delay time. The estimation obtained from

FIG. 8. The second derivative of the response signal z�t� de-
picted in Fig. 7�a� for the first-order time-delay system. The inset is
an enlarged fragment of d2z�t� /dt2 at small t values.

FIG. 9. Superposition z of 100 responses of the first-order time-
delay system to the small periodic impulsive disturbance and the
cross-correlation function C�s� of the signals of disturbance and the
system response in the presence of additive Gaussian white noise
for noise level of 5% ��a� and �b�� and 100% ��c� and �d��. The
dashed lines indicate the time corresponding to the delay time �1

=120 s.
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the cross-correlation function �Fig. 9�b�� is �1=119 s. In
spite of the noise presence, the delay time is recovered with
good accuracy. The decrease of the response amplitude, es-
timated from Fig. 9�a� as 7.0 dB/octave, indicates that the
system is of first order. In Figs. 9�c� and 9�d� the standard
deviation of noise is equal to the standard deviation of data
without noise and is 40 times greater than the standard de-
viation of the disturbance. For such a high level of noise the
system response �Fig. 9�c�� fails to estimate the delay time.
However, the cross-correlation function still gives a close
estimation of �1. The delay time estimated from Fig. 9�d� is
�1=119 s.

IV. CONCLUSION

We have proposed a set of methods for the reconstruction
of stable systems with a linear filter and nonlinear time-delay
feedback performing periodic oscillations. The first method
is based on a system perturbation by a strong regular external
signal giving rise to a transient process. The use of a periodic
impulsive signal with easily controlled parameters allows
one to vary in a wide range the strength and duration of the
disturbance, choosing an appropriate variant for the system
under investigation. The method uses the statistical analysis
of time intervals between extrema in the time series of the
disturbed system and the projection of infinite-dimensional
phase space of the time-delay system to suitably chosen low-
dimensional subspaces. It is an extension of the methods
developed in Refs. �11,15,16,28� for reconstruction of time-
delay systems from chaotic time series to the case of periodic
regimes. The proposed method allows one to recover not
only the delay times as the other methods developed for
time-delay systems in periodic regimes, but also the nonlin-
ear functions and the parameters characterizing the inertial
properties of the system. This method is successively applied
to the time series of a model delay-differential equation and
an experimental time series acquired from an electronic os-

cillator with delayed feedback, disturbed by an external sig-
nal.

The second method is based on an analysis of the time-
delay system response to a weak periodic disturbance. It is
an attempt to estimate the parameters of a time-delay system
in a periodic regime that does not exploit a significant
change of the system dynamics. For example, the amplitude
of the external impulsive signal was only about 3% of the
amplitude of the periodic oscillations of the time-delay sys-
tem considered in the paper. The method exploits an inves-
tigation of the cross-correlation function of the signals of
perturbation and the system response. For extracting the re-
sponse of the system to small periodic signals of disturbance
we used the method of accumulation. It is shown that the
proposed method is efficient for the estimation of the delay
time and the order of delay-differential equation of the ring
time-delay system. We verified the method by applying it to
the time series of model delay-differential equations of dif-
ferent order, including those heavily corrupted by noise. The
delay time was recovered with good accuracy even in the
presence of noise whose amplitude was comparable with the
amplitude of the time-delay system oscillations.

Periodic behavior is typical for some time-delay systems
�21–23� in spite of their potential ability to exhibit a high-
dimensional chaotic dynamics. The proposed methods can be
useful for experimental investigation of such systems. How-
ever, it should be emphasized that both methods developed
in the paper can be applied only in the case when we are able
to perturb the system dynamics. One cannot use these meth-
ods for the recovery of time-delay systems having at one’s
disposal only unperturbed periodic time series.
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